Passive Design for RFOG Networks

Mark Conner
Market Development Manager – Access
18 March 2009
SCTE Piedmont Chapter Meeting
Agenda

• Why all-fiber access?
• RFoG overview
 – What and why RFoG?
 – Network elements
 – A look at the R-ONU
 – Compare to GPON and EPON
• All-fiber access
 – Architectures
 – Current deployment methods
 – Migration

REMEMBER:

RFoG is a work in progress
It has come a long way
But it has not been through balloting
Many parameters are still being worked through
What All-Fiber?

• Bandwidth supply/demand
• Competition
• Reduce operating costs
• In greenfield deployments, reduce long term total cost
 – Avoids major rebuild by deploying fiber first
• All-fiber access can be a universal strategy
 – Commercial
 – Residential
Bandwidth – Movin’ On Up!

Source: Technology Futures, Inc.

Data Source: FCC. Speeds are based on DSL & FTTL data. Excludes mobile wireless broadband.
What & Why RFoG?

• RFoG is …
 – All-fiber access technology that leverages fiber to the subscriber and is compatible with the MSO back office / equipment

• RFoG leverages the MSO framework
 – Same headend gear
 – Same CPE
 – Designed to allow co-existent overlays

• RFoG simplifies & reduces costs such as …
 – Minimizes/eliminates system power bills, outages due to power failures
 – No “adjustments” needed in the outside plant (i.e. amp balancing)
 – Eliminates annual proof performance (fly-overs, leakage testing)
 – Return path ingress issues no longer apply
What are the RFoG Elements?

Headend
- 54 - 1,002 MHz
- Rest of headend (CMTS, etc.)
- 1550 nm

ODN
- 1310 or 1610 nm
- Other RFoG and HFC networks
- WDM

Subscriber
- Standard CPE
- Split 32X
- R-ONU

Source: SCTE
What are the RFOG Elements?

Headend
- 1550 nm
- Rest of headend
- Switch (no CMTS used)

ODN
- Still 1550 nm down, except no DOCSIS component
- Other RFOG and HFC networks

Subscriber
- RF looks like HFC, data on 10/100/1000Base-T, POTS

Source: SCTE
R-ONU Close-Up

Source: SCTE
Wavelength Line-Up

• **EPON (IEEE 802.3ah) and GPON (ITU-T G.984)**
 – Downstream: 1490 nm
 – Upstream: 1310 nm
 – Video (RF): 1550 nm

• **10GEPON (802.3av):**
 – Downstream: 1577 nm
 – Upstream: 1270 nm
 – Video (RF): 1550 nm

• **RFoG**
 – Downstream (Video): 1550 nm
 – Upstream: 1310 nm or 1610 nm

Source: SCTE
RFoG Wavelength Selection

• Downstream is straightforward
 – Same 1550 RF wavelength used with GPON and EPON
 – RF carriers video, data and voice

• Upstream has several options
 – 1310 is least expensive, but does not allow coexistence with xPON
 – 1590 was an early choice to allow coexistence, but was also in 10GEPON standard
 – 1610 is the primary wavelength
 • 1310 recognized as option

Source: SCTE
What’s Next in SCTE IPS WG5?

• Key Work Streams
 – Wavelength and isolation
 • Filters, laser performance
 – System loss budget
 • Loss budget analysis, impact on performance
 – R-ONU downstream
 • Output levels
 – Upstream parameters
 • RF levels, OMI, CNR, trigger levels
 – R-ONU physical characteristics
 • Temperature, humidity, powering & more
 – Extended reach/transition nodes
 • Beyond 20 km

Upcoming Meetings
• 18 March - Call
• 22 April - Philadelphia

Source: SCTE
Mapping from HFC to All-Fiber

- RFoG Architectures
- HFC to All-Fiber Cross Reference
- All-Fiber Architectural Models
RFoG Architectures

• RFoG is architecturally agnostic
• ‘Optical Hub’
 – All electronics at head end means all-passive network
 – Some electronics in the field – all-fiber, but not all-passive network
• Key is the link specification
 – Loss budget (28 dB)
 – Reach (20 km)
 – Connectors (APC)
• Three main Splitting Strategies
 – Home Run (head end)
 – Centralized (field concentration point)
 – Distributed (multiple field locations)
All-Fiber Access Network and HFC Cross-Reference

- HFC
- TAP
- TAP
- TAP
- AMP
- TAP
- Headend
- Node
- Coax – one shared conductor
- Splitter & opt’l house amplifier
- One cable, 4-12 fibers/terminal
- ONU, Splitter
- Terminal
- Terminal
- Terminal
Headend - Home Run
Considered for Smaller Deployments
Local Convergence – Centralized Splitting
Excellent in Large-Scale Deployments
Distributed Splitting
Alternative for Low Density and Rural Deployments
Design

• Bottoms-up Methodology
• Port Count & Drop Length
Bottoms-up Methodology

1. Define network access point (NAP) groups
 - Strive for symmetry and uniform size (“fours”)
 - Minimize drop length (reduce drop labor and material)

2. Join NAPs into distribution cables
 - Minimize number of cables (reduce placement cost)
 - Right-size fiber counts

3. Define local convergence point (LCP) service areas
 - Use multiple LCPs – small service areas
 - Small areas minimize cable lengths and fiber counts
 - Allocate space for future network growth

4. Determine transport path
Bottoms-up Methodology
Mapping All-Fiber Design to HFC

- Reduce LCP serving area size
- Resembles N+0, N+1
- Capture ≤ 128 homes/businesses
Deployment Scenarios

• RFOG Only
• Overlay
• Managing the Network
• Residential & Commercial Services
RFoG & More

• Initial deployment as RFoG only
 – Standard RF capability
 – Voice, video and data
 – DOCSIS 2.0 or 3.0

• Overlay with EPON, GPON or 10G version
 – xPON adds data capacity
 – Coexists w/RFoG
 – RF continues to deliver video, voice
 – Commercial and residential opportunities

• Evolutionary Scenarios
 – Low cost & swap
 – Pre-provision (wavelength, expansion port)
 – Premium – all upfront
Managing Evolution

• Objectives
 – Subscriber management
 • Requires only basic skills – no splicing
 • Migration to expanded data in one truck roll
 – Technology migration
 • Change just the active devices at the ends
 – Change from optical splitting to wavelength multiplexing
 • Subscriber location
 • One field location
Moving from RFoG to RFoG with Overlay

- Disconnect from RFoG-only splitter
- Make new connection to splitter w/RFoG and xPON
- Proceed to customer’s house and make any equipment changes
- Architecture/splitter placement strategy is key enabler for future network flexibility
Migration

• Leverage existing fibers to extend all-fiber services
 – Requires one fiber per 32 homes
 OR
 – add local hub in the case of limited fiber availability

• HFC first, all-fiber future
 – Provision at least one fiber per 32 homes passed
 – Build distribution from node to homes
 – Convert node to LCP
Conclusion

- RFoG leverages existing MSO equipment while building an all-fiber foundation
- Eliminate/minimize powering, testing and maintenance costs
- Select splitting architecture for best flexibility
- Build once; design to standard passive parameters
- Evolve capacity through technology overlay
 - EPON, GPON; future 10GEPON, 10GPON
 - Residential and commercial
- Program for migration – provision optical fibers for all-fiber access