

Agenda

- DOCSIS 3.0 Overview
- DOCSIS 3.0 terminology
- DOCSIS modem registration
- IPv6 and what it means to you
- DOCSIS 3.0 security enhancements
- Advanced Troubleshooting
- Q&A

DOCSIS 3.0 Overview

- DOCSIS 3.0 Specification(s)
 - ✓ DOCSIS 3.0 Interface Specifications (Released December 2006)
 - ✓ Equipment readily available
- Downstream data rates of 160 Mbps or higher
 - ✓ Channel Bonding
 - ✓ 4 or more channels
- Upstream data rates of 120 Mbps or higher
 - ✓ Channel Bonding
 - ✓ 4 or more channels
- Internet Protocol version 6 (IPv6)
 - ✓ Current System (IPv4) is limited to 4.3B numbers
 - ✓ IPv6 greatly expands the number of IP addresses
 - Expands IP address size from 32 bits to 128 bits
 - IPv6 supports 3.4×10³⁸ addresses;
 - Colon-Hexadecimal Format
- 100% backward compatible with DOCSIS 1.0/1.1/2.0

© The Volpe Firm Confidential

256QAM => ~40Mbps

8 x 256QAM => ~320 Mbps

64QAM => ~30Mbps

4 x 64QAM => ~120 Mbps

4923:2A1C:0DB8:04F3:AEB5:96F0:E08C:FFEC

DOCSIS Comparison

			Upstream			am					
		Channel configurat	ion				Channel configuration				
Version	Minimum selectable number of channels	Minimum number of channels that hardware must be able to support	Selected number of channels	Maximum number of channels	DOC SI S throughput	EuroDOC SIS throughput	Minimum selectable number of channels	Minimum number of channels that hardware must be able to support	Selected number of channels	Maximum number of channels	Throughput
1.x	1	1	1	1	42.88 (38) Mbit/s	55.62 (50) Mbit/s	1	1	1	1	10.24 (9) Mbit/s
2.0	1	1	1	1	42.88 (38) Mbit/s	55.62 (50) Mbit/s	1	1	1	1	30.72 (27) Mbit/s
3.0	1	4	т	No maximum defined	m × 42.88 (m × 38) Mbit/s	m × 55.62 (m × 50) Mbit/s	1	4	n	No maximum defined	n × 30.72 (n × 27) Mbit/s

(Source: Wikipedia)

Channel configuration		Downstream	n throughput	Unstanting throughout
Number of downstream channels Number	of upstream channels	DOCSIS	EuroDOC SIS	opstream throughput
4	4	171.52 (152) Mbit/s	222.48 (200) Mbit/s	122.88 (108) Mbit/s
8	4	343.04 (304) Mbit/s	444.96 (400) Mbit/s	122.88 (108) Mbit/s
(Source: Wikipedia)				

DOCSIS[®] 3.0 Assumed Downstream RF Channel Transmission Characteristics

Parameter	Value
Frequency range	108 to 1002 MHz edge to edge
RF channel spacing (design bandwidth)	6 MHz
Transit delay from head-end to most distant customer	≤ 0.800 ms (typically much less)
Carrier-to-noise ratio in a 6 MHz band	Not less than 35 dB
Carrier-to- CTB, CSO, X-MOD, Ingress	Not less than 41 dB
Amplitude ripple	3 dB within the design bandwidth
Group delay ripple in the spectrum occupied by the CMTS	75 ns within the design bandwidth
Micro-reflections bound for dominant echo	-10 dBc@ <= 0.5 μsec -20 dBc@ <= 1.5 μsec -30 dBc@ > 1.5 μsec
Maximum analog video carrier level at the CM input	17 dBmV

DOCSIS[®] 3.0 Assumed Upstream RF Channel Transmission Characteristics

Parameter	Value
Frequency range	5 to 85 MHz edge to edge
Carrier-to-interference plus ingress ratio	Not less than 25 dB
Carrier hum modulation	Not greater than –23 dBc (7%)
Burst noise	Not longer than 10 µsec at a 1 kHz average rate for most cases
Amplitude ripple 5-42 MHz	0.5 dB/MHz
Group delay ripple 5-42 MHz	200 ns/MHz
Micro-reflections—single echo	-10 dBc@ <= 0.5 μsec -20 dBc@ <= 1.0 μsec -30 dBc@ > 1.0 μsec
Seasonal and diurnal reverse gain (loss) variation	Not greater than 14 dB min to max

The Bonded Upstream

© The Volpe Firm Confidential

Power Variance – 6dB Bonded vs. Unbonded

DOCSIS 3.0 Cable Modem 1 Channel Transmit Power Levels

Constellation	Constellation Gain G _{const} Relative to 64 QAM (dB)	L	P _{min} (dBmV) M	н	P _{max} (dBmV) TDMA	P _{max} (dBmV) S-CDMA	P _{min} - G _{const} (dBmV)	P _{max} - G _{const} (dBmV) TDMA	P _{max} - G _{const} (dBmV) S-CDMA
QPSK	-1.18	17	20	23	61	56	18.18	62.18	57.18
8 QAM	-0.21	17	20	23	58	56	17.21	58.21	56.21
16 QAM	-0.21	17	20	23	58	56	17.21	58.21	56.21
32 QAM	0.00	17	20	23	57	56	17.00	57.00	56.00
64 QAM	0.00	17	20	23	57	56	17.00	57.00	56.00
128 QAM	0.05	17	20	23	N/A	56	16.95	N/A	55.95

DOCSIS 3.0 Cable Modem 4 Channel Transmit Power Levels

Constellation	Constellation Gain G _{const} Relative to 64 QAM (dB)	Ĺ	P _{min} dBmV M) H	P _{max} (dBmV) TDMA	P _{max} (dBmV) S-CDMA	P _{min} - G _{const} (dBmV)	P _{max} - G _{const} (dBmV) TDMA	P _{max} - G _{const} (dBmV) S-CDMA
QPSK	-1.18	17	20	23	55	53	18.18	56.18	54.18
8 QAM	-0.21	17	20	23	52	53	17.21	52.21	53.21
16 QAM	-0.21	17	20	23	52	53	17.21	52.21	53.21
32 QAM	0.00	17	20	23	51	53	17.00	51.00	53.00
64 QAM	0.00	17	20	23	51	53	17.00	51.00	53.00
128 QAM	0.05	17	20	23	N/A	53	16.95	N/A	52.95

© The Volpe Firm Confidential

Measuring Upstream Carrier Amplitudes

These carriers will NOT have the same peak amplitude level when measured on a typical spectrum analyzer when they are each hitting the CMTS at "0 dBmV power per channel".

TERMINOLOGY & REGISTRATION

© The Volpe Firm Confidential

Downstream Terminology

- Primary Downstream Channel(s)
 - ✓ Master clock, UCD, MAPs, etc.
 - ✓ CMs Registration + PDU
- Non-Primary Capable Channel(s)
 - ✓ PDU only
 - ✓ D3.0 modems
- Downstream Service Group (DSG)
 - ✓ DS bonded CHs available to CM
- MAC Domain Descriptor (MDD)
 - ✓ Contains the Downstream Channel ID of the Primary DS Channel
- Receive Channel Configuration (RCC)
 - RCC encoding configures the CM's physical layer components to specific downstream frequencies

Upstream Terminology

- Upstream Channel
 - Physical Upstream Channel (DOCSIS RF), or
 - ✓ Logical Upstream Channel (share same RF ch)
- Upstream Channel Descriptor UCD
 - ✓ MAC message to CMs describing US CH
- Upstream Bonding Group (UBG)
 - ✓ Set of US bonded channels for CM
- Transmit Channel Set (TCS)
 - Set of upstream channels that a cable modem is configured to use for upstream transmission
- Transmit Channel Config (TCC)
 - ✓ Add, delete, change channels TLV

© The Volpe Firm Confidential

DOCSIS Communications Model

IP Data Backbone All three layers must work for DOCSIS to work x Server 1 X Server 2 Server 3 DOCSIS PROTOCO Cable **RF PLANT** Compute Televisio Subscriber CMTS Side **HFC Network** 14 © The Volpe Firm Confidential

Cable Modem Registration – DOCSIS 1.x/2.0

- ✓ CM registration requires the physical layer for signal transport
- DOCSIS and IP protocol layers are necessary to communicate the proper messages for modems to come online
- ✓ The next slides illustrate the interaction of these layers

TFTP & Registration

CMTS

cable modem

TFTP Boot File Transfer TFTP Boot Request DOCSIS config file which contains For 'Boot File name' Classifiers for QoS and schedule, **Baseline Privacy (BPI), etc.** Validate file MD5 Checksum Implement Config **Registration Request** Send QoS Parameters **Registration Response Contains Assigned SID Modem registered Registration Acknowledge** Send QoS Parameters © The Volpe Firm Confidential

CM Registration Summary

- ✓ Downstream channel search
- ✓ Ranging
- ✓ DHCP
- ✓ ToD
- ✓ TFTP
- ✓ Registration
- ✓ Optional BPI Encryption
- ✓ Ranging occurs at least every 30 seconds when online
 - T3 timeout if Range-Request not received within 35 seconds
 - T4 timeout if Range-Response not received within 200 ms

D3.0 Modem Registration

ANALYSIS TEAM Bradley Huffaker, kc claffy SOFTWARE DEVELOPMENT Young Hyun, Ma uckie IP addresses IP links ASes AS links POSTER DESIGN Connie Lyu, Will Michaelsen IPv4 16,802,061 18,796,744 26,7021 85,104 IPv6 8,551 21,852 715 1,672

A B K. HONTIN AARNet, Acreo, AMN-IX, APAN, ARIN, ASTI, CAIDA, Canatie, CENIC, CNRST, CYMRU, Evolva Telecom, FORTH, FunkFeue HEANet, Hurricane Electric, Indonesian IPv6 Task Force, Internet Systems Consortium, Iowa State Univ., KREONet2, Level Communications. Men and Mice. National Research Council Canada, NCAR, NIC Chile, NIC Mexico, Northeastern Univ., Public Univ. of Navarra, Purdue Univ., RNP, Sout hern Methodist Univ., SURFnet, TKK, TWAREN, UCAD, Univ. Leipzig, Univ. Pol Cambridge, Univ. of Hawaii, Univ. of Napoli, Univ. of Nevada at Reno, Univ. of Oregon, Univ. of Walkato, Univ. of Washi Zurich, US Army Research Lab

Copyright (c) 2010 UC Regents All rights reserved.

ERATIVE ASSOCIATION FOR INTERNET DATA ANALYS mr0505 | a bila / 6 0002,0505 959

(Ark¹), the ma ors probed paths toward 174 million /24 untable prefixes se ews² Border Gate Protocol (BGP) routing

angle= ables on 1 August 2010 For the IPv6 map CAIDA collected data from 12 Ark IPv6 pref

amount or persiste seem moves even such dates on in time 2AN to 2AN. amount of the second part of the second part of the second part of the second secon the IPv4 graph, AS 3356 remained dominant, with the

independently; some network providers have topology spread across multiple ASes. A more accurate topology-based ranking of providers would require a

The obse ved IPv6 AS ranking experienced great The time in on map charact operators for an one of the polarity of the polarit

22

DOCSIS IPV6

© The Volpe Firm Confidential

longitude of the AS's BGP prefixe

in netacq

IPv6

You may not even know it happened...IPv6 Day

June 8th, 2011

Ready for the future of the Internet?

No problems detected.

You don't have IPv6, but you shouldn't have problems on websites that add IPv6 support.

You should have no problems on World IPv6 Day, June 8.

Learn more about IPv6, or read about World IPv6 Day.

C Google

IPv6 and DOCSIS 3.0

- IPv4 only (DHCP4)
- IPv6 only (DHCP6)
- Alternate Provisioning Mode
 ✓ DHCP6 then DHCP4
- Dual-Stack Provisioning Mode
 ✓ DHCP6 and DHCP4

© The Volpe Firm Confidential

Why better DOCSIS security?

- Various anonymous cable modem hackers have reported high success rates with zero signs of detection
 - Durandal has a machine on a business configuration that has been seeding torrents steadily for over a year
 - ✓ Many people have as many as 8 or more modems running concurrently
 - ✓ In all of these scenarios, the individuals are paying for service. They are simply splicing their line to add additional modems

Source: Defcon.org

Its beyond simple theft of service. Substantial traffic users can have a significant impact on system performance

Hacking the Cable Modem

- Which OIDs are used for hacking?
- 1.3.6.1.2.1.69.1.4.5.0

 \checkmark To figure out what the current cfg file name is for cable modem.

- 1.3.6.1.2.1.10.127.1.1.3.1.3.1
- 1.3.6.1.2.1.10.127.1.1.3.1.5.1

✓ To check Up/DownStream speed of cfg file

• 1.3.6.1.2.1.69.1.4.4.0

✓ To read TFTP Server IP of cable modem

• 1.3.6.1.2.1.69.1.1.3.0

With some software and cheap hardware – hacking is pretty darn simple in a non-BPI+ environment

BPI/BPI+ in DOCSIS 1.x / 2.0

- BPI: Baseline Privacy Interface
 - ✓ Methods for encrypting traffic between the cable modem and the
 - ✓ CMTS with 56bit DES encryption
- BPI+: Baseline Privacy Interface Plus
 - ✓ Implemented in DOCSIS 1.1 specs (Backwards compatible)
 - ✓ Introduces X.509 v3 (RSA 1024bit) digital certificates & key pairs
 - Authentication based on certificate hardware identity; validated when modem registers with a CMTS
- Makes hacking a bit more difficult, however...
 - ✓ Operators tend to leave "Self-signed certificates on
 - During registration, there is no BPI+ security, all transactions are in the clear

- ✓ DOCSIS 1.x and 2.0 is still exposed to security breaches
- ✓ Even with Enforce TFTP, Masking TFTP file names, TFTP Proxy, etc.
 © The Volpe Firm Confidential

Enhance DOCSIS 3.0 & IPv6 Security

- DOCSIS 3.0 Introduces
 - ✓ 128 bit AES traffic encryption
 - ✓ Early CM authentication and traffic encryption (EAE)
 - ✓ Source IP address verification (SAV)
 - ✓ TFTP proxy and configuration file learning
 - ✓ MMH algorithm for CMTS MIC
 - ✓ Certificate revocation
 - Encryption support of new method of multicast messaging

Security Recommendation

- Enable BPI+ and EAE
- Use BPI+ Enforce
- Disable Self-Signed Certificates
- Use "Secure Provisioning" by leveraging SAV
- Only allow CM software download via CVC
- Disable Public SNMP access
- Eliminate "Walled Garden" customer access points
 - ✓ Walled Garden sites are the primary gateway for theft-of-service
- Restrict access of your security department and policies to a limited, trusted number of people
 - ✓ Security breeches often come from within

© The Volpe Firm Confidential

ADVANCED TROUBLESHOOTING

32

© The Volpe Firm Confidential

Advanced Field Troubleshooting

- Why is DOCSIS 3 Troubleshooting Different?
 - ✓ Multiple Bonded Channels
 - Downstream
 - Not that different.
 - The channels are constant carrier
 - Multiple downstream channels have been around forever
 - Upstream
 - Still most vulnerable portion of plant
 - The modem is no longer limited to a single upstream transmit path
 - In some ways this is actually easier with DOCSIS 3.0

You Likely Know Your Problems

- Downstream Typically not so bad
 - ✓ CTB, CSO, CNR under digital channels
 - ✓ Levels not correct into home (high, low, tilt)
 - ✓ Suck-outs, especially if you have contractors doing disconnects
 - ✓ Cheap modulators & upconverters never save you money
 - ✓ DOCSIS 3.0 headaches Channel bonding, isolation, legacy
- Upstream Your Achilles heal
 - Easy: AWGN noise, impulse noise, coherent noise, CPD, Laser clipping
 - ✓ Hard: Group delay, frequency response, micro-reflections
 - ✓ Insane: DOCSIS 3.0 multiple upstreams power levels
- Theft of Service

Likely Downstream Problems

- CM must lock to 4 to 8 DS channels meeting power and MER requirements of D2.0
- ✓ For M-CMTS, DTI timer must be operable
- ✓ CMTS local DS and/or eQAM DS are points of failure
- ✓ All DSs must be within 60 MHz contiguous BW
- ✓ eQAM channels must be within 24 MHz BW
- ✓ GigE interface between CMTS and eQAM is point of failure
- eQAM output is lower than conventional QAM output headend combining may need to be changed

Likely Upstream Problems

- ✓ Four times the US bandwidth (four bonded channels) creates a new dynamic for troubleshooting and monitoring:
- ✓ 6.4 MHz * 4 = 25.6 MHz (without guard bands)
- ✓ Increased likelihood for laser clipping
- Increased probability for problems with ingress, group delay, microreflections, and other linear distortions
- Inability to avoid problem frequencies such as Citizens' Band, Ham, Shortwave, and hop between CPD 6MHz spacing
- ✓ Where are you going to put your sweep points?

Test Equipment has Advanced!

0

© The Volpe Firm Confidential

Downstream Impairments

Good MER

1	1	12	1	-	-	莱	" 痛
R	-	- ie		1 de	1	*	×.
P	,#	.**	1	- 1997	1	à.	5 6 -
فلؤ	1	17	1	8	35	-	sk.
-	30	-	÷.	35		*	140
*	-	¥	15.	÷.	de	3h	y the second
ê	, Se	*	19	10	.1	÷.	10
	N.C.	1	1	-22-2	152	: ada	12

Noise

Gaussian noise impairments. Clusters poorly defined and spread out.

Possible Causes: Low RF levels, low inputs to RF amplifiers

Intermittent Interference

On/Off interference below the desired QAM signal. Isolated dots appear away from the main cluster.

Possible Causes:

Laser clipping, intermittent ingress (2-way radios & paging systems)

Downstream Impairments

* :	*	ŧ.	÷.	*	*	1	-
#1	4	7		+	.*	- \$	3
*	÷.	1		-4	*	÷	.*
÷	*	R	4	4	*	-	
ĸ	8 2	8	٠		×		.0
4	1	đ	đ.	L e:	·	iş.	**
<i>#</i> .	*	*		*	+		2
*	18	14	1	344	-	144	1

Compression

Non-linear distortion. Clusters are "pulled in" at the corners.

Possible Causes: Overdriven or bad RF/IF amps, IF/RF filters, up/down converters, IF equalizers, bad clock recovery circuits

Phase Noise

Phase shift of I & Q data. The clusters appear to rotate around the center of the constellation.

Possible Causes: Headend IF amplifiers and Up/Down converters

19-27	11	12.3	13	100	18.0 16.0	and the	14 M
$c_{s,\pi}^{(0)}$	1	14	The	100	14	1	1 Ales
		100		1.40 12.40	184	100	and.
E A	1.4.	-1. K	200	SIG.	A. S.	and the	1
\$3	1	10	1.1	They a	1	83	$\{ k_i \}$
10494 10494	11.5	5. A.	5.4. 525	and and	4 Mg.	1.4.1	14 A.
Y's	No.	100	No. We	Single a	200	13	12.86
200		the second	14.	14	the state	N.S	Carlos Carlos

Coherent Disturbance

Interference from a signal under the desired QAM signal. Clusters appear doughnut shaped.

Possible Causes: Ingress, CW Interference

Modulation Error Ratio (MER)

256 QAM $MER_{symb} (dB) = 10 \bullet \log_{10} \left\{ \frac{E_{av}}{\frac{1}{N} \sum_{i=1}^{N} |e_i|^2} \right\}$ The quality of a QAM signal can be defined by the dispersion of the constellation's points considering the target value

- The error or dispersion power is calculated by the value mean square of the error vectors (real value VS target value)
- MER is the ratio in dB between the average power of the signal and the power of the error vectors

Testing DOCSIS 3.0 with a D3.0 Meter

Freq	Enc.	BW	Туре	Level	Head.
19.3	A-TDMA	6.4MHz	QAM16	35.8	19.2
25.7	A-TDMA	6.4MHz	QAM16	35.3	19.7
32.1	A-TDMA	6.4MHz	QAM16	36.3	18.7
385	A-TDMA	6.4MHz	QAM16	36.8	18.2

© The Volpe Firm

Confidential

A Clean Upstream: Or Is It?

Wouldn't Even Work for 16-QAM, Here's Why!

- Note ~ -22 dBc echo at 2.5 µsec (arrow)
- Echo does not meet DOCSIS US -30 dBc at >1.0 µsec parameter
- In-channel amplitude ripple is 1.6 dB, and group delay ripple is about 270 ns peak-topeak

Graphic courtesy of Sunrise Telecom

© The Volpe Firm Confidential

What are we looking for?

- Got DOCSIS 3.0 on your mind...
 - ✓ Plan on laser clipping being a popular word

e'

Partial Service Troubleshooting

- Partial Service exhibits itself as missing channels
- Does not exhibit as Packetloss or Throughput issue

- An impaired service may or may not exhibit codeword errors and packetloss
- ✓ When troubleshooting impaired service, it is critical to view the performance of the individual upstream channels.

doo	csis		⊂i≡[⊫ Matri:
38.20	00MHz QAM64	00	:07:11:05:D5:10
0.0%	Codeword Errors	0.0%	MER / Unequalized 44.7 / 35.0 dE
0.0%	Carrier Level 12.9 dB	0.0%	Micro-reflection -41.3 dE
0.0%	0.3 dB/MHz	0.0%	Group Dela 30.6 ns/MHz
0.0%	Ingress Under Carrier -57.5 dBc	0.0%	Impulse Noise 3.5
1			
	Packet Histo	ory	Live
< Back	View 🔺		Settings

Live Settings	0.0%	Codeword Errors	0.0%	MER / Unequalized
	0.070	Carrier Level	0.070	Micro-reflection
	0.0%	0.0	0.0%	0.0
		In-Rand Response		Group Delay Matr
	3	19.000MHz / 0A	464 / 6 400	MH7 D5:1
		25 400MHz / OAI	464 / 6 400	MHz qualize
	0.000	31.800MHz / QA	164 / 6.400	MHz 5.0 d
		38.200MHz / Q	AM64 / 6.4	00MHz effectio
	0.	38 200MHz / 0A	M64 / 6 40	OMHZ J
	016			
			7 0 0%	20.6 mc/MH
	0.0%	0.5 08/141	2 0.0%	30.0 hs/Min
		Ingress Under Carri	er	Impulse Nois
	0.0%	-57.5 dB	c 0.0%	3.5
				—
				· · · · · · · · · · · · · · · · · · ·
		Packet Hi	story	Live
	< Back	View	•	Settings

© The Volpe Firm Confidential

docsis

do	csis		Matri
38.20	00MHz QAM64	00	:07:11:05:D5:1
0.0%	Codeword Errors	0.0%	MER / Unequalized 44.7 / 35.0 dl
0.0%	Carrier Level 12.9 dB	0.0%	Micro-reflectio -41.3 di
0.0%	0.3 dB/MHz	0.0%	Group Dela 30.6 ns/MH:
0.0%	Ingress Under Carrier -57.5 dBc	0.0%	Impulse Nois 3.5
1			
	Packet Histo	ory	Live
< Back	View 🔺		Settings

doc	sis		⊂i≡ Matr
38.20	0MHz QAM64	00	:07:11:05:D5:1
0.0%	Codeword Errors	0.0%	MER / Unequalize
0.0%	Carrier Level 12.9 dB	0.0%	Micro-reflectio
0.0%	0.3 dB/MHz	0.0%	Group Dela 30.6 ns/MH
0.0%	Ingress Under Carrier -57.5 dBc	0.0%	Impulse Nois 3.5
1			
	Packet Histo	ory	Live
< Back	View 🔺		Settings

docsis

do	csis		⊂i≡[Matri
38.20	00MHz QAM64	00	:07:11:05:D5:1
0.0%	Codeword Errors	0.0%	MER / Unequalize 44.7 / 35.0 dl
0.0%	Carrier Level 12.9 dB	0.0%	Micro-reflectio -41.3 dl
0.0%	0.3 dB/MHz	0.0%	Group Dela 30.6 ns/MH
0.0%	Ingress Under Carrier -57.5 dBc	0.0%	Impulse Nois 3.5
1			
	Packet Histo	ory	Live
< Back	View 🔺		Settings

00:	07:11:05:D5:10	31.800MHz QAM	64 0	0:07:11:05:D5:10	25.400MHz Q	AM64 00	:07:11:05:D5:10
6	MER / Unequalized 44.7 / 35.0 dB	Codeword 0.0%	0.0%	MER / Unequalized 45.7 / 35.0 dB	Code	eword Errors 0 0.0%	MER / Unequalized 46.9 / 35.0 dB
	Micro-reflection	Carrier	Level	Micro-reflection	0.0%	arrier Level	Micro-reflection
	Group Delay	In-Band Re	sponse	Group Delay	In-Ba	nd Response	Group Delay
6	30.6 ns/MHz Impulse Noise	0.0% 0.3 dB/	MHz 0.0%	25.0 ns/MHz	0.0% 0.3		17.6 ns/MHz
6	3.5	0.0%	locs	s			Matrix 4.3
	· ·	•	MH	iz			
	Settings A	< Back	0/	Codeword Erro	rs 0.0%	MER / Uneq	ualized ^{Live}
		0.0	70	Consistent law		U.U /	floation
		0.0	%	Carrier Leve	0.0%	Microre	0.0
		d		In-Band Bespon		Grow	n Delay Matrix
		19	e.				5:10
			<u>p</u>	9.000MHz /	QAM64 / 6.	400MHz	
		OF F	2	5.400MHz / Q	AM64 / 6.40	OMHz	anzeo
		22.2 <i>00</i>	3	1.800MHz / Q	AM64 / 6.40	OMHZ	+ aB
			2	8.200MHZ/Q	AM64 / 6.40	UMHZ	ection
		0.0%	1	9.000MHz / Q	AM64 / 6.40	00MHz	- 3 dB
		OK		Cancel			Delay
		100.0%	6 2	.1 dB/MHz	100.0%	553.5	ns/MHz
			Ingres	ss Under Carrie	er.	In	npulse Noise
		4.5%		-34.2 dB	4.5%		3.5
				1. TO STORE STORE	A		100000
			-				-
				Packet His	tory		Live
4		< Back	10	View		Set	tings 🔺
	r						
			ΩT	ha Valna Fi	rm Con	fidential	
	-					machtial	

docsis

do	csis	⊂EF Matrix	do	csis	⊂⊂E Matrix	do	csis	⇔erF Matrix	▶ docs	sis
38.20	00MHz QAM64	00:07:11:05:D5:10	31.80	00MHz QAM64 00	:07:11:05:D5:10	25.40	00MHz QAM64 00	:07:11:05:D5:10	19.000	MHz QAM64 00:
0.0%	Codeword Errors 0 0.0%	MER / Unequalized 44.7 / 35.0 dB	0.0%	Codeword Errors 0.0%	MER / Unequalized 45.7 / 35.0 dB	0.0%	Codeword Errors 0.0%	MER / Unequalized 46.9 / 35.0 dB	95.5%	Codeword Errors 3 100.0%
0.0%	Carrier Level 12.9 dB 0.0%	Micro-reflection	0.0%	Carrier Level 16.0 dB 0.0%	Micro-reflection -42.7 dB	0.0%	Carrier Level 16.1 dB 0.0%	Micro-reflection -41.9 dB	0.0%	Carrier Level 16.1 dB 100.0%
0.0%	0.3 dB/MHz 0.0%	6 30.6 ns/MHz	0.0%	0.3 dB/MHz 0.0%	Group Delay 25.0 ns/MHz	0.0%	0.3 dB/MHz 0.0%	Group Delay 17.6 ns/MHz	100.0%	In-Band Response 2.1 dB/MHz 100.0%
0.0%	Ingress Under Carrier -57.5 dBc 0.0%	Impulse Noise 3.5	0.0%	Ingress Under Carrier -60.1 dBc 0.0%	Impulse Noise 4.1	0.0%	Ingress Under Carrier -61.6 dBc 0.0%	Impulse Noise 4.3	4.5%	Ingress Under Carrier -34.2 dBc 4.5%
•		•	4			4		· ·	•	
	Packet History	Live		Packet History	Live		Packet History	Live		Packet History
< Back	View 🔺	Settings	< Back	View 🔺	Settings	< Back	View 🔺	Settings 🔺	< Back	View 🔺

- Obviously there is an issue with the channel at 19 MHz
- Utilize this method to traverse the network and find the impairment causing this issue

52

Group De

Live

553.5 ns/MH

Summary

- CMTS and SNMP data provide good troubleshooting
 ✓ But not all of it
- DOCSIS 3.0
 - ✓ Significantly more throughput
 - ✓ Supports legacy D2.0 modems
 - \checkmark D3.0 modems load balance in the upstream w/o loss of service
- Advanced test equipment is an investment that
 - \checkmark Saves you time and money
 - ✓ Gets your subscribers back online and keeps them there
 - ✓ Makes you a predictable and reliable service provider
 - ✓ Seamlessly integrates headend & field 2 places / 1 person

For more information go to: http://bradyvolpe.com http://volpefirm.com

© The Volpe Firm Confidential